What is Change Failure Rate And How To Reduce It?

Understand change failure rate- a critical DORA metrics. Learn how to calculate CFR with formula, and ways to improve change failure rate for DevOps success.
What's Change Failure Rate And How To Improve It?

Picture this: Your SRE team worked day and night to launch a feature release. However, the big news wasn't a successful release, but the bugs resulted in high crash rates. To cope up, your team raised a PR to fix the bugs. And boom! It all went haywire. The failure was one of many crash that happened in the last few months. The application crash rate is at an all-time high, and customers have been asking to revoke their subscription.

Well, isn’t this situationship nightmarish, and yet pretty common in the IT universe? Crashes, cyberattacks, bugs, and rollbacks are the norm in IT. But you must strive to keep them at minimal levels to make your business/startup survive. That’s where DevOps, GitOps, Software test automation, Predictive software maintenance, and other SDLC practices kick in— with promises of streamlining & safeguarding your infrastructure. 

In this never ending quest for customer delight, survival, and tech excellence, metrics play a crucial role. They are nothing less of a guiding light. For DevOps, this guiding light is DORA metrics.

Continuing the norm, this blog delves into the nuances of Change Failure Rate DORA metrics

Read this blog to understand-

  • What’s the change failure rate DORA metrics with example?
  • How to calculate it using the change failure rate formula?
  • How to improve change failure rate for DevOps success?

Let’s understand it in detail. 

What is Change Failure Rate?

Change Failure Rate is one of the key software delivery performance metrics that measure the percentage of changes in the production environment that you make to the core application or software you are working on, which results in degraded performance, availability, or functionality of the software to the extent that you need to respond immediately and address the issue. The remediation techniques could be a rollback, hotfix, fix forward method, a patch, coldfix (for unexploited critical vulnerability/threat), etcetera.

In simple words, Change Failure Rate DORA metrics help you quantify the quality of software your team is deploying. The reliability and stability of the software delivered. It’s akin to the canaries in the coal mine and signals you of the broken DevOps-led SDLC processes & practices before they prove disastrous and fatal for the organization.

How To Calculate Change Failure Rate?

The change failure rate formula is very simple and we discuss that next. But calculating CFR in software development isn’t that straightforward. There is no standard definition of software failure, and thus the onus is on the organizations to define on their own what constitutes failure. 

For instance, the AWS team was working on the Billing system, and a mishap (typo) happened which resulted in 4 hours of S3 outage and impacted enterprises as large as Quora and Trello. Now, this was indeed a failure but neither the new code deployment nor the bugs in the older deployments triggered it. Instead, it was due to a typo from one of the members working on the Billing system, who accidentally entered a parameter value in the command that took offline a larger set of servers than intended. Though this resulted in failure, it cannot be counted for the Change failure rate calculation.

To clear the misconceptions and ambiguity around change failure rate, let’s untangle the phrase.

Change Failure Rate is about how often ‘deployment changes’ result in ‘degraded service’ that cannot continue in the same state, and needs immediate remediation to address the issues on-priority. So, code refactoring PRs couldn’t be considered a deployment failure. While code refactoring that introduces bugs in a previously deployed version would be considered a deployment failure. 

Clear? Cool. 

Let’s now define the formula to calculate the change failure rate.

Change Failure Rate Formula

CFR = (Count of deployments that resulted in degraded services / Total deployment count) * 100

Change Failure Rate Example: A typical change failure rate example could be the incident that brought down the Knight Capital Empire

Something very tragic happened to Knight on the morning of August 1, 2012. Because of flawed software delivery processes, they ended up deploying a piece of code that wasn’t supposed to go to production. They were manually deploying fresh code for automated algorithmic trading. But it went awry. Rolling back to the old code on all servers further exacerbated the problem. As it wasn’t the latest code that had the issue, but the older one. Long story short, by the time the development team could spot the exact issue (SMARS algorithm), and turn it off on all servers, the bug had already cost them $440Mn+. All in a blink of an eye. Okay, 30 minutes to be specific.

This is a real-world change failure rate example, a deployment scenario that demonstrates what qualifies as degradation in service.

Now let’s take a hypothetical change failure rate example. 

Let’s say, you work for an eCommerce company. Your team had sprints planned to release 3 backlog items every week. Your team released 8 small features in about a month. Ideally, as per the cadence you should have released 12 features. But it was 8. This is because 3 out of the 8 features had vulnerabilities that crackers could have exploited and incurred heavy losses for your eCommerce company. So, the team had to roll back those deployments, rework them to fix the glitch, and then redeploy it. So, as per the change failure rate formula, your CFR is-

Deployments that resulted in degraded service = 3

Total Deployment count = 8

CFR = (3/8)*100 = 37.5%

Change Failure Rate Misconceptions

  • A major misconception is about what can be considered as deployment failure. There could be multiple approaches to defining this. 

For example, you can configure your incident management & observability tool (e.g., PagerDuty, Status page, Data dog) to observe and track your deployments and trigger alerts for incidents that you have labelled as “critical” or “high” severity i.e., incidents that need immediate resolution. Incidents that force you to roll back the deployment to previous versions are a failure. 

For example, deployments that result in service unavailability, aka outage, or introduce a major vulnerability/threat and seek immediate hotfix/patch is also a definite failure.

  • Another misconception is that fix-only deployments that result in failure need not be considered to calculate change failure rate. 

It’s evident from how Google defines change failure rate in the state of DevOps 2022 report that every deployment attempt needs to be counted under total deployments, and of those the ones that resulted in failures in production are to be counted under failed deployments, be they regular or fix-only deployments.

  • One more misconception is when failure happens in the build pipeline. 

Depending on how you configure your incident management tool, this can be factored into the change failure rate calculation. But from our discussion so far, it should be crystal clear that only changes in the deployment are considered for CFR calculation and nothing else.

What’s A Good Change Failure Rate?

To be honest, 0%. 

However, deployment failures in software engineering are almost inevitable. 

DevOps practices are normally segmented into 4 performance buckets in the State of DevOps 2022 report.

As per the report, the ideal CFR is in the range of 0%-15%. But the Accelerate State of DevOps Report 2023 shares more concrete numbers.

So, as per the latest data, if Elite is your DevOps performance destination, a 5% Change failure rate should be your goal. But the same report also mentions Goodhart’s law, which states that when a measure becomes a target it ceases to be a good measure. So, make sure that you or your team do not desperately attempt to game the metrics. Instead, channel your efforts toward improving SDLC processes to improve both- software delivery performance and operational performance. So, let’s discuss how you can improve change failure rate and belong to the DevOps Elite performers.

Why Measure Change Failure Rate DORA Metrics?

DevOps is indeed a value driver for tech-led organizations. As per DORA’s white paper on the ROI of DevOps, if large organizations (technical staff count as much as 8500) who are DevOps high-performers could only avoid code rework by just 1.5% to earn the DevOps Elite performer status, on their course, they would be saving more then $27.5 Million

The same report shared how AOL leveraged DevOps to bring down their deployment time from 6 hours to a mere 45 minutes, and how Intuit raked 50% higher conversions from the DevOps enabled high development velocity

But not everyone is getting to taste the success of DevOps. 

Puppet reports that 80% of the organizations remain in the middle of their DevOps journey, experiencing only a moderate degree of success, that too not on all fronts. 

Such DevOps practitioners have a substantial scope of improvements to make so that they can grab the low-hanging fruits. Esp, the Low Performers. 

But how do such organizations get to know what are the bottlenecks, and what needs to be fixed? 

That’s exactly the problem that DORA metrics help address. The four key DORA metrics enable you to measure software throughput (Lead Time, Deployment Frequency) & software quality/stability (Change Failure Rate, Mean Time To Recovery). Measuring & improving these metrics is the first step toward improving the outcomes you reap from DevOps adoption. And Change Failure Rate is one of the critical metrics that tells you how robust or resilient are your engineering processes, and how well you’ve imbibed the essence of DevOps into your engineering culture.

How to Improve Change Failure Rate For DevOps Success?

Any SDLC activity that improves code quality would help improve the change failure rate.

As per State of DevOps Report 2023, CI/CD implementation, loosely coupled architecture, and trunk-based development help improve software delivery performance, aka MTTR and CFR. In general, enhancing technical capabilities positively impacts delivery performance. 

The real hero is code review speed. Faster code review speed significantly improves change failure rate DORA metrics. Are Code Reviews the barrier to your DevOps success?  Well, if you’re using Hatica as your engineering analytics tool, you can gauge whether Code Reviews are your bottleneck or not by tracking the following engineering metrics in your Hatica dashboard.

Review collaboration dashboard from Hatica

Hatica's data-driven live reports helps engineering teams understand how often PRs are merged without review via Unreviewed PRs Merged. Unreviewed PRs are bug-ridden and would result in a high change failure rate.

Active Reviewers Average indicates how many developers are reviewing code, approving code, or leaving suggestions to improve the code. The live reports also give contextual insights about PRs reviewed, Review time, and Reviewer reaction time to gauge the health of Code Review processes.

PR Size has everywhere been lauded as the key metric that directly impacts software quality and reliability, and subsequently helps improve change failure rate. The smaller the PR size, the easier & faster it is to review, modify, and maintain it. It makes sense to look at the following metrics to get the pulse of your PRs: 

  • PR Size i.e., the total number of Lines of Code (LoC) that are meant to be reviewed & deployed.
  • PRs created i.e., the total number of active PRs.
  • PRs merged i.e., approved PRs.
  • PRs reviewed i.e., how many PRs are reviewed by the reviewer

In addition to the above PR metrics, the Hatica dashboard also avails you PR Throughput metric, PR Throughput Per contributor metric etcetera to help you gain better visibility into your engineering practices. This subsequently will further improve your change failure rate metrics.

Another savior for your engineering team to improve CFR is to obsessively embrace automation testing into your SDLC process, and identify bugs early in the cycle. Look at metrics like code coverage to see what percentage of your code is covered by test cases. The more robust your software testing process, the more bug-free will be your code, aka better code quality. Ultimately, this will help improve the change failure rate.

In general, CI/CD, code documentation, pair-programming, peer-led code reviews, open communication culture, and blameless retrospectives help improve the change failure rate DevOps metrics.

Bottom Line: Unlock DevOps Success with Hatica

Measuring & improving change failure rate DORA Metrics is key to reaping the maximum value from DevOps initiatives. You must assess your current state and also look at how you compare with industry benchmarks in terms of Elite, High, Medium, and Low IT performers. In your quest for DevOps Success, metrics could be your ace card. That’s where Hatica helps you. 

  • With Hatica, you can track key DORA metrics including CFR, MTTR, Lead Time, and Deployment Frequency alongside 130+ engineering metrics that provide you with unparalleled visibility into your engineering processes.
  • Hatica also helps you discover the fronts where you’re excelling, and the fronts where you lag. Accordingly, you can take corrective action to improve your software delivery performance, code quality metrics, review process, automation testing culture, or fix whatever is holding you back. 
  • Besides, Hatica helps you go beyond just optimizing for engineering efficiency and also empowers you to excel at operational efficiency by enabling you to manage software reliability aspects and facilitating you to inculcate a developer growth conducive environment that scores well on developer well-being, developer experience (DevEx) and expectations.

Read more insights on using metrics to optimize for engineering efficiency on the Hatica Blog.

Keep Hacking!

FAQs

1. How do you Calculate Failure Rate (CFR)?

The formula to calculate the failure rate is:

Failure Rate = 1/MTBF = R/T

Here, R is the total number of failures and T is the Total Time taken.

2. What Are the Advantages of Lower Change Failure Rates?

The advantages of a lower change failure rate (CFR) are streamlined development processes, leading to increased product stability and more satisfied customers.

Share this article:
Table of Contents
  • What is Change Failure Rate?
  • How To Calculate Change Failure Rate?
  • Change Failure Rate Misconceptions
  • What’s A Good Change Failure Rate?
  • Why Measure Change Failure Rate DORA Metrics?
  • How to Improve Change Failure Rate For DevOps Success?
  • Bottom Line: Unlock DevOps Success with Hatica
  • FAQs
  • 1. How do you Calculate Failure Rate (CFR)?
  • 2. What Are the Advantages of Lower Change Failure Rates?

Ready to dive in? Start your free trial today

Overview dashboard from Hatica